Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 73(3): 581-595, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29237012

RESUMO

Background: Atovaquone/proguanil, registered as Malarone®, is a fixed-dose combination recommended for first-line treatment of uncomplicated Plasmodium falciparum malaria in non-endemic countries and its prevention in travellers. Mutations in the cytochrome bc1 complex are causally associated with atovaquone resistance. Methods: This systematic review assesses the clinical efficacy of atovaquone/proguanil treatment of uncomplicated malaria and examines the extent to which codon 268 mutation in cytochrome b influences treatment failure and recrudescence based on published information. Results: Data suggest that atovaquone/proguanil treatment efficacy is 89%-98% for P. falciparum malaria (from 27 studies including between 18 and 253 patients in each case) and 20%-26% for Plasmodium vivax malaria (from 1 study including 25 patients). The in vitro P. falciparum phenotype of atovaquone resistance is an IC50 value >28 nM. Case report analyses predict that recrudescence in a patient presenting with parasites carrying cytochrome b codon 268 mutation will occur on average at day 29 (95% CI: 22, 35), 19 (95% CI: 7, 30) days longer than if the mutation is absent. Conclusions: Evidence suggests atovaquone/proguanil treatment for P. falciparum malaria is effective. Late treatment failure is likely to be associated with a codon 268 mutation in cytochrome b, though recent evidence from animal models suggests these mutations may not spread within the population. However, early treatment failure is likely to arise through alternative mechanisms, requiring further investigation.


Assuntos
Atovaquona/farmacologia , Resistência a Múltiplos Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Proguanil/farmacologia , Falha de Tratamento , Combinação de Medicamentos , Quimioterapia Combinada , Complexo III da Cadeia de Transporte de Elétrons/genética , Humanos , Malária Falciparum/prevenção & controle , Malária Vivax/prevenção & controle , Mutação , Viagem
3.
PLoS Negl Trop Dis ; 9(10): e0004068, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26485258

RESUMO

Plasmodium malariae is widely distributed across the tropics, causing symptomatic malaria in humans with a 72-hour fever periodicity, and may present after latency periods lasting up to many decades. Delayed occurrence of symptoms is observed in humans using chemoprophylaxis, or patients having received therapies targeting P. falciparum intraerythrocytic asexual stages, but few investigators have addressed the biological basis of the ability of P. malariae to persist in the human host. To investigate these interesting features of P. malariae epidemiology, we assembled, here, an extensive case series of P. malariae malaria patients presenting in non-endemic China, Sweden, and the UK who returned from travel in endemic countries, mainly in Africa. Out of 378 evaluable P. malariae cases, 100 (26.2%) reported using at least partial chemoprophylaxis, resembling the pattern seen with the relapsing parasites P. ovale spp. and P. vivax. In contrast, for only 7.5% of imported UK cases of non-relapsing P. falciparum was any chemoprophylaxis use reported. Genotyping of parasites from six patients reporting use of atovaquone-proguanil chemoprophylaxis did not reveal mutations at codon 268 of the cytb locus of the P. malariae mitochondrial genome. While travellers with P. malariae malaria are significantly more likely to report prophylaxis use during endemic country travel than are those with P. falciparum infections, atovaquone-proguanil prophylaxis breakthrough was not associated with pmcytb mutations. These preliminary studies, together with consistent observations of the remarkable longevity of P. malariae, lead us to propose re-examination of the dogma that this species is not a relapsing parasite. Further studies are needed to investigate our favoured hypothesis, namely that P. malariae can initiate a latent hypnozoite developmental programme in the human hepatocyte: if validated this will explain the consistent observations of remarkable longevity of parasitism, even in the presence of antimalarial prophylaxis or treatment.


Assuntos
Antimaláricos/farmacologia , Atovaquona/farmacologia , Citocromos b/genética , Mutação , Plasmodium malariae/efeitos dos fármacos , Proguanil/farmacologia , Códon , Combinação de Medicamentos , Plasmodium malariae/genética
4.
Trends Pharmacol Sci ; 35(1): 4-11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24268763

RESUMO

Sarco/endoplasmic reticulum Ca(2+)-ATPases (SERCAs) are increasingly being studied for therapeutic interventions in the fields of cancer, heart disease, and infection. Our suggestion a decade ago that artemisinins (the most important antimalarial class) act by inhibiting parasite SERCAs (PfATP6 and orthologues) expressed in Xenopus oocytes stimulated new directions for research away from conventional site-of-action studies of the food vacuole of the parasite. There is, however, still no consensus on how artemisinins act. We have continued to explore the hypothesis that PfATP6 is a key target by confirming that artemisinins inhibit Plasmodium falciparum PfATP6 when it is expressed in yeast and that it is essential for survival of pathogenic asexual-stage parasites. These advances are discussed with their implications for our understanding of how parasites regulate calcium in different stages of asexual development and for the global challenge posed by artemisinin resistance.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Animais , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Xenopus , Leveduras/genética , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...